16,080 research outputs found

    Identification and characterization of extraterrestrial non-chondritic interplanetary dust

    Get PDF
    Interplanetary dust particles (IDPs) are among the most pristine and primitive extraterrestrial materials available for direct study. Most of the stratospheric particles selected for study from the JSC Curatorial Collection were chondritic in composition (major element abundances within a factor of two of chondritic meteorites) because this composition virtually ensures that the particle is from an extraterrestrial source. It is likely that some of the most interesting classes of IDP's have not been recognized simply because they are not chondritic or do not fit established criteria for extraterrestrial origin. Indeed, mass spectroscopy data from the Giotto Flyby of comet Halley indicate that a substantial fraction of the dust is in the submicron size range and that a majority of these particles contain C, H, O, and/or N as major elements. The preponderance of CHON particles in the coma of Halley implies that similar particles may exist in the JSC stratospheric dust collection. However, the JSC collection also contains a variety of stratospheric contaminants from terrestrial sources which have these same characteristics. Because established criteria for extraterrestrial origin may not apply to such particles in individual cases, and integrated approach is required in which a variety of analysis techniques are applied to the same particle. Non-chondritic IDP's, like their chondritic counterparts, can be used to elucidate pre- and early solar system processes and conditions. The study of non-chondritic IDP's may additionally yield unique information which bears on the nature of cometary bodies and the processing of carbonaceous and other low atomic number materials. A suite of complementary techniques, including Low Voltage Scanning Electron Microscopy (LVSEM), Energy-Dispersive X-ray Microanalysis (EDX), Secondary Ion Mass Spectrometry (SIMS) isotope-ratio imaging and Analytical Electron Microscopy (AEM), were utilized to accomplish the following two objectives: (1) to develop criteria for the unequivocal identification of extraterrestrial non-chondritic IDP's; and (2) to infer IDP parent body, solar nebula, and pre-solar conditions through the study of phases, textures, and components contained within non-chondritic IDP's. The general approach taken is designed to maximize the total information obtained from each particle. Techniques will be applied in order from least destructive to most destructive

    Fluid mechanics of nodal flow due to embryonic primary cilia

    Get PDF
    Breaking of left–right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal–ventral and anterior–posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, ‘whirling’ primary cilia, tilted towards the posterior, drive a flow implicated in the initial left–right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory

    Mathematical modelling of cilia driven transport of biological fluids

    Get PDF
    Cilia-driven flow occurs in the airway surface liquid, in the female and male reproductive tracts and enables symmetry-breaking in the embryonic node. Viscoelastic rheology is found in healthy states in some systems, whereas in others may characterise disease, motivating the development of mathematical models that take this effect into account. We derive the fundamental solution for linear viscoelastic flow, which is subsequently used as a basis for slender-body theory. Our numerical algorithm allows efficient computation of three-dimensional time-dependent flow, bending moments, power and particle transport. We apply the model to the large-amplitude motion of a single cilium in a linear Maxwell liquid. A relatively short relaxation time of just 0.032 times the beat period significantly reduces forces, bending moments, power and particle transport, the last variable exhibiting exponential decay with relaxation time. A test particle is propelled approximately one-fifth as quickly along the direction of cilia beating for scaled relaxation time 0.032 as in the Newtonian case, and mean volume flow is abolished, emphasizing the sensitivity of cilia function to fluid rheology. These results may have implications for flow in the airways, where the transition from Newtonian to viscoelastic rheology in the peri-ciliary fluid may reduce clearance

    A viscoelastic traction layer model of mucociliary flow

    Get PDF
    A new mathematical model of the transport of mucus and periciliary liquid (PCL) in the airways by cilia is presented. Mucus is represented by a linearly viscoelastic fluid, the mat of cilia is modelled as an ‘active porous medium.’ The propulsive effect of the cilia is modelled by a time-dependent force acting in a shear-thinned ‘traction layer’ between the mucus and the PCL. The effects of surface and interface tension are modelled by constraining the mucus free surface and mucus–PCL interface to be flat. It is assumed that the epithelium is impermeable to fluid. Using Fourier series, the system is converted into ODEs and solved numerically. We calculate values for mean mucus speed close to those observed by Matsui et~al. [{J. Clin. Invest.}, 102(6):1125’1131, 1998], (~40 μms−1). We obtain more detail regarding the dynamics of the flow and the nonlinear relationships between physical parameters in healthy and diseased states than in previously published models. Pressure gradients in the PCL caused by interface and surface tension are vital to ensuring efficient transport of mucus, and the role of the mucus–PCL interface appears to be to support such pressure gradients, ensuring efficient transport. Mean transport of PCL is found to be very small, consistent with previous analyses, providing insight into theories regarding the normal tonicity of PCL

    Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb

    Get PDF
    During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 μBq m−3 but found an average in the free troposphere of 107 μBq m−3. This average was elevated by a large number of very active (up to 405 μBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport

    Cosmological Constraints from Moments of the Thermal Sunyaev-Zel'dovich Effect

    Full text link
    In this paper, we explain how moments of the thermal Sunyaev-Zel'dovich (tSZ) effect can constrain both cosmological parameters and the astrophysics of the intracluster medium (ICM). As the tSZ signal is strongly non-Gaussian, higher moments of tSZ maps contain useful information. We first calculate the dependence of the tSZ moments on cosmological parameters, finding that higher moments scale more steeply with sigma_8 and are sourced by more massive galaxy clusters. Taking advantage of the different dependence of the variance and skewness on cosmological and astrophysical parameters, we construct a statistic, ||/^1.4, which cancels much of the dependence on cosmology (i.e., sigma_8) yet remains sensitive to the astrophysics of intracluster gas (in particular, to the gas fraction in low-mass clusters). Constraining the ICM astrophysics using this statistic could break the well-known degeneracy between cosmology and gas physics in tSZ measurements, allowing for tight constraints on cosmological parameters. Although detailed simulations will be needed to fully characterize the accuracy of this technique, we provide a first application to data from the Atacama Cosmology Telescope and the South Pole Telescope. We estimate that a Planck-like full-sky tSZ map could achieve a <1% constraint on sigma_8 and a 1-sigma error on the sum of the neutrino masses that is comparable to the existing lower bound from oscillation measurements.Comment: 11 pages, 12 figures, to be submitted to Phys. Rev. D; v2: 14 pages, 16 figures, matches PRD accepted version (changes from v1 include additional calculations with primordial non-Gaussianity and a new appendix discussing the tSZ kurtosis

    Relativistic magnetospheric electrons: Lower ionospheric conductivity and long-term atmospheric variability

    Get PDF
    Long term observations of relativistic electrons in the earth's outer magnetosphere show a strong solar cycle dependence with a prominent intensity maximum during the approach to solar minimum. This population therefore closely corresponds to the presence of high speed solar wind streams emanating from solar coronal holes. Using a numerical code, the precipitating electron energy deposition in the earth's upper and middle atmosphere were calculated. Observed events (typically persisting several days) would have maximum effect in the 40 to 60 km altitude range with peak energy depositions greater than 110 keV/cu cm-s. It is suggested that this electron population could play an important long term role in modulating lower D region ionization and middle atmospheric ozone chemistry. Methods are described of observing middle atmospheric and lower ionospheric effects of the electrons including balloon, riometer, and space-based ozone sensor systems. A particularly promising approach may involve the monitoring of global Schumann resonance modes which are sensitive to global changes in the properties of the earth-ionosphere cavity. Present work indicates that Schumann resonance properties are moderately correlated with the flux of precipitating relativistic electrons thus offering the possibility of continuously monitoring this aspect of magnetosphere-atmosphere coupling

    Systematics of the odd-even effect in the resonance ionization of Os and Ti

    Get PDF
    Measurements of the odd-even effect in the mass spectrometric analysis of Ti and Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even effects are reduced below the 0.5% level. Depending on the polarization state of the laser large odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below the 0.5% level by depolarization of the laser field
    • …
    corecore